Package Information
Available Nodes
Documentation
n8n-nodes-supabase-namespace
This is an n8n community node that allows you to work with Supabase Vector Store with extended support for custom schemas and namespaces.
Supabase Vector Store is a vector database that allows you to store and search document embeddings efficiently, ideal for AI applications and semantic search.
n8n is a workflow automation platform with fair-code license.
Installation
Operations
Credentials
Compatibility
Usage
Resources
Version History
Installation
Follow the installation guide in the n8n community nodes documentation.
Operations
This node supports the following operations:
- Load: Load an existing vector store from Supabase
- Insert: Insert new documents into the vector store
- Retrieve: Retrieve similar documents based on queries
- Update: Update existing documents in the vector store
- Retrieve as Tool: Use retrieval as a tool in LangChain flows
Main Features
ποΈ Custom Schema Support
- Use database schemas different from the default "public" schema
- Flexible configuration for multi-tenant environments
π·οΈ Namespace System
- Logical partitioning of documents
- Efficient filtering by namespace
- Option to clear namespaces before inserting new data
π Custom Queries
- Configuration of custom query names
- Support for advanced metadata filters
- Native integration with LangChain
Credentials
To use this node, you need to configure Supabase credentials:
Prerequisites
- An account on Supabase
- A configured Supabase project
- A PostgreSQL database with the
pgvectorextension enabled
Credential Configuration
- Go to your Supabase project
- Navigate to Settings > API
- Copy your Project URL (host)
- Copy your service_role key (not the anon key)
- In n8n, configure the credentials with:
- Host: Your Project URL
- Service Role: Your service_role key
Required Table Structure
Your table must have the following minimum structure:
CREATE TABLE your_table_name (
id BIGSERIAL PRIMARY KEY,
content TEXT,
metadata JSONB,
embedding vector(1536), -- or the dimension of your embeddings
namespace TEXT -- column for the namespace system
);
Compatibility
- Minimum n8n version: 1.0.0
- Minimum Node.js version: 20.15
- Tested versions: n8n 1.0.0+
Usage
Basic Configuration
- Table Name: Select or write the name of your table
- Use Custom Schema: Activate if you want to use a schema different from "public"
- Schema: Specify the schema name (e.g., "ai_docs", "user_data")
- Namespace: Define a namespace to organize your documents
Common Use Cases
π Client Document Management
{
"tableName": "documents",
"schema": "client_data",
"namespace": "client_123",
"options": {
"clearNamespace": true
}
}
π Semantic Search
{
"tableName": "knowledge_base",
"namespace": "product_docs",
"options": {
"queryName": "search_products",
"metadataFilter": {
"category": "electronics"
}
}
}
π Data Update
{
"tableName": "user_preferences",
"schema": "user_profiles",
"namespace": "user_456"
}
LangChain Integration
This node integrates perfectly with LangChain flows in n8n, enabling:
- Complex reasoning chains
- Conversational agents
- Recommendation systems
- Document analysis
Resources
- n8n community nodes documentation
- Official Supabase documentation
- pgvector guide
- LangChain documentation
- Project repository
Version History
v0.1.0 (Current)
- β Basic support for Supabase Vector Store
- β Namespace system implemented
- β Support for custom schemas
- β Complete CRUD operations
- β LangChain integration
- β Advanced metadata filters
Contributing
Contributions are welcome! Please:
- Fork the repository
- Create a feature branch (
git checkout -b feature/AmazingFeature) - Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
License
This project is licensed under the MIT License - see the LICENSE.md file for details.
Author
NΓ©stor Cano - nestor.cano.vielma@gmail.com
β If this node is useful to you, consider giving the repository a star!