Actions364
- Continuous Activity Actions
- Dataset Actions
- Get Last Metric Values
- Get Metadata
- Get Schema
- Get Single Metric History
- List Datasets
- List Partitions
- Compute Metrics
- Create Dataset
- Create Managed Dataset
- Delete Data
- Delete Dataset
- Execute Tables Import
- Get Column Lineage
- Get Data
- Get Data - Alternative Version
- Get Dataset Settings
- Get Full Info
- List Tables
- List Tables Schemas
- Prepare Tables Import
- Run Checks
- Set Metadata
- Set Schema
- Synchronize Hive Metastore
- Update Dataset Settings
- Update From Hive Metastore
- API Service Actions
- Bundles Automation-Side Actions
- Bundles Design-Side Actions
- Connection Actions
- Dashboard Actions
- Data Collection Actions
- Data Quality Actions
- Compute Rules on Specific Partition
- Create Data Quality Rules Configuration
- Delete Rule
- Get Data Quality Project Current Status
- Get Data Quality Project Timeline
- Get Data Quality Rules Configuration
- Get Dataset Current Status
- Get Dataset Current Status per Partition
- Get Last Outcome on Specific Partition
- Get Last Rule Results
- Get Rule History
- Update Rule Configuration
- DSS Administration Actions
- Job Actions
- Library Actions
- Dataset Statistic Actions
- Discussion Actions
- Flow Documentation Actions
- Insight Actions
- Internal Metric Actions
- LLM Mesh Actions
- Machine Learning - Lab Actions
- Delete Visual Analysis
- Deploy Trained Model to Flow
- Download Model Documentation of Trained Model
- Generate Model Documentation From Custom Template
- Start Training ML Task
- Update User Metadata for Trained Model
- Update Visual Analysis
- Adjust Forecasting Parameters and Algorithm
- Compute Partial Dependencies of Trained Model
- Compute Subpopulation Analysis of Trained Model
- Create ML Task
- Create Visual Analysis
- Create Visual Analysis and ML Task
- Generate Model Documentation From Default Template
- Generate Model Documentation From File Template
- Get ML Task Settings
- Get ML Task Status
- Get Model Snippet
- Get Partial Dependencies of Trained Model
- Get Scoring Jar of Trained Model
- Get Scoring PMML of Trained Model
- Get Subpopulation Analysis of Trained Model
- Get Trained Model Details
- Get Visual Analysis
- List ML Tasks of Project
- List ML Tasks of Visual Analyses
- List Visual Analyses
- Reguess ML Task
- Machine Learning - Saved Model Actions
- Compute Partial Dependencies of Version
- Get Version Scoring PMML
- Get Version Snippet
- Import MLflow Version From File or Path
- List Saved Models
- List Versions
- Set Version Active
- Compute Subpopulation Analysis of Version
- Create Saved Model
- Delete Version
- Download Model Documentation of Version
- Evaluate MLflow Model Version
- Generate Model Documentation From Custom Template
- Generate Model Documentation From Default Template
- Generate Model Documentation From File Template
- Get MLflow Model Version Metadata
- Get Partial Dependencies of Version
- Get Saved Model
- Get Subpopulation Analysis of Version
- Get Version Details
- Get Version Scoring Jar
- Set Version User Meta
- Update Saved Model
- Long Task Actions
- Machine Learning - Experiment Tracking Actions
- Macro Actions
- Plugin Actions
- Download Plugin
- Fetch From Git Remote
- Get File Detail From Plugin
- Get Git Remote Info
- Get Plugin Settings
- Install Plugin From Git
- Install Plugin From Store
- List Files in Plugin
- List Git Branches
- List Plugin Usages
- Move File or Folder in Plugin
- Add Folder to Plugin
- Create Development Plugin
- Create Plugin Code Env
- Delete File From Plugin
- Delete Git Remote Info
- Delete Plugin
- Download File From Plugin
- Move Plugin to Dev Environment
- Pull From Git Remote
- Push to Git Remote
- Rename File or Folder in Plugin
- Reset to Local Head State
- Reset to Remote Head State
- Set Git Remote Info
- Set Plugin Settings
- Update Plugin Code Env
- Update Plugin From Git
- Update Plugin From Store
- Update Plugin From Zip Archive
- Upload File to Plugin
- Upload Plugin
- Project Deployer Actions
- Get Deployment Settings
- Get Deployment Status
- Create Deployment
- Create Infra
- Create Project
- Delete Bundle
- Delete Deployment
- Delete Infra
- Delete Project
- Get Deployment
- Get Deployment Governance Status
- Get Infra
- Get Infra Settings
- Get Project
- Get Project Settings
- Save Deployment Settings
- Save Infra Settings
- Save Project Settings
- Update Deployment
- Upload Bundle
- SQL Query Actions
- Wiki Actions
- Managed Folder Actions
- Meaning Actions
- Model Comparison Actions
- Notebook Actions
- Project Actions
- Project Folder Actions
- Recipe Actions
- Scenario Actions
- Security Actions
- Streaming Endpoint Actions
- Webapp Actions
- Workspace Actions
Overview
The "Update Model Comparison" operation in the Dataiku DSS node allows users to update an existing model comparison within a specified project. This node interacts with the Dataiku DSS API, enabling automation and integration of model comparison management into workflows.
Typical use cases include:
- Automating updates to model comparisons as part of a machine learning lifecycle.
- Integrating model comparison updates into CI/CD pipelines for data science projects.
- Managing model comparison metadata or configurations programmatically without manual intervention.
For example, a user might update the parameters or metadata of a model comparison after retraining models, ensuring that the latest comparison results are reflected in the project.
Properties
| Name | Meaning |
|---|---|
| Project Key | The unique identifier of the Dataiku DSS project where the model comparison exists. |
| Request Body | A JSON object containing the details and fields to update in the model comparison. |
Output
The node outputs the response from the Dataiku DSS API call as JSON. This typically includes the updated model comparison object reflecting the changes made.
If the API returns binary data (not typical for this operation), it would be provided as binary output, but for updating model comparisons, the output is JSON.
Dependencies
- Requires an active connection to a Dataiku DSS instance.
- Requires valid API credentials (an API key) for authentication with the Dataiku DSS API.
- The node expects the Dataiku DSS server URL and user API key to be configured in the credentials.
Troubleshooting
- Missing Credentials: If the API key credential is not set, the node will throw an error indicating missing credentials.
- Required Parameters Missing: The node validates required parameters such as Project Key and Model Comparison ID; missing these will cause errors.
- API Errors: Errors returned by the Dataiku DSS API (e.g., invalid JSON in request body, unauthorized access) will be surfaced as node errors with descriptive messages.
- Invalid JSON in Request Body: Ensure the JSON provided in the Request Body property is well-formed to avoid parsing errors.
Links and References
This summary focuses on the "Update Model Comparison" operation under the "Model Comparison" resource, describing its purpose, inputs, outputs, dependencies, and common troubleshooting points based on static analysis of the node's source code and provided properties.