Actions364
- Continuous Activity Actions
- Dataset Actions
- Get Last Metric Values
- Get Metadata
- Get Schema
- Get Single Metric History
- List Datasets
- List Partitions
- Compute Metrics
- Create Dataset
- Create Managed Dataset
- Delete Data
- Delete Dataset
- Execute Tables Import
- Get Column Lineage
- Get Data
- Get Data - Alternative Version
- Get Dataset Settings
- Get Full Info
- List Tables
- List Tables Schemas
- Prepare Tables Import
- Run Checks
- Set Metadata
- Set Schema
- Synchronize Hive Metastore
- Update Dataset Settings
- Update From Hive Metastore
- API Service Actions
- Bundles Automation-Side Actions
- Bundles Design-Side Actions
- Connection Actions
- Dashboard Actions
- Data Collection Actions
- Data Quality Actions
- Compute Rules on Specific Partition
- Create Data Quality Rules Configuration
- Delete Rule
- Get Data Quality Project Current Status
- Get Data Quality Project Timeline
- Get Data Quality Rules Configuration
- Get Dataset Current Status
- Get Dataset Current Status per Partition
- Get Last Outcome on Specific Partition
- Get Last Rule Results
- Get Rule History
- Update Rule Configuration
- DSS Administration Actions
- Job Actions
- Library Actions
- Dataset Statistic Actions
- Discussion Actions
- Flow Documentation Actions
- Insight Actions
- Internal Metric Actions
- LLM Mesh Actions
- Machine Learning - Lab Actions
- Delete Visual Analysis
- Deploy Trained Model to Flow
- Download Model Documentation of Trained Model
- Generate Model Documentation From Custom Template
- Start Training ML Task
- Update User Metadata for Trained Model
- Update Visual Analysis
- Adjust Forecasting Parameters and Algorithm
- Compute Partial Dependencies of Trained Model
- Compute Subpopulation Analysis of Trained Model
- Create ML Task
- Create Visual Analysis
- Create Visual Analysis and ML Task
- Generate Model Documentation From Default Template
- Generate Model Documentation From File Template
- Get ML Task Settings
- Get ML Task Status
- Get Model Snippet
- Get Partial Dependencies of Trained Model
- Get Scoring Jar of Trained Model
- Get Scoring PMML of Trained Model
- Get Subpopulation Analysis of Trained Model
- Get Trained Model Details
- Get Visual Analysis
- List ML Tasks of Project
- List ML Tasks of Visual Analyses
- List Visual Analyses
- Reguess ML Task
- Machine Learning - Saved Model Actions
- Compute Partial Dependencies of Version
- Get Version Scoring PMML
- Get Version Snippet
- Import MLflow Version From File or Path
- List Saved Models
- List Versions
- Set Version Active
- Compute Subpopulation Analysis of Version
- Create Saved Model
- Delete Version
- Download Model Documentation of Version
- Evaluate MLflow Model Version
- Generate Model Documentation From Custom Template
- Generate Model Documentation From Default Template
- Generate Model Documentation From File Template
- Get MLflow Model Version Metadata
- Get Partial Dependencies of Version
- Get Saved Model
- Get Subpopulation Analysis of Version
- Get Version Details
- Get Version Scoring Jar
- Set Version User Meta
- Update Saved Model
- Long Task Actions
- Machine Learning - Experiment Tracking Actions
- Macro Actions
- Plugin Actions
- Download Plugin
- Fetch From Git Remote
- Get File Detail From Plugin
- Get Git Remote Info
- Get Plugin Settings
- Install Plugin From Git
- Install Plugin From Store
- List Files in Plugin
- List Git Branches
- List Plugin Usages
- Move File or Folder in Plugin
- Add Folder to Plugin
- Create Development Plugin
- Create Plugin Code Env
- Delete File From Plugin
- Delete Git Remote Info
- Delete Plugin
- Download File From Plugin
- Move Plugin to Dev Environment
- Pull From Git Remote
- Push to Git Remote
- Rename File or Folder in Plugin
- Reset to Local Head State
- Reset to Remote Head State
- Set Git Remote Info
- Set Plugin Settings
- Update Plugin Code Env
- Update Plugin From Git
- Update Plugin From Store
- Update Plugin From Zip Archive
- Upload File to Plugin
- Upload Plugin
- Project Deployer Actions
- Get Deployment Settings
- Get Deployment Status
- Create Deployment
- Create Infra
- Create Project
- Delete Bundle
- Delete Deployment
- Delete Infra
- Delete Project
- Get Deployment
- Get Deployment Governance Status
- Get Infra
- Get Infra Settings
- Get Project
- Get Project Settings
- Save Deployment Settings
- Save Infra Settings
- Save Project Settings
- Update Deployment
- Upload Bundle
- SQL Query Actions
- Wiki Actions
- Managed Folder Actions
- Meaning Actions
- Model Comparison Actions
- Notebook Actions
- Project Actions
- Project Folder Actions
- Recipe Actions
- Scenario Actions
- Security Actions
- Streaming Endpoint Actions
- Webapp Actions
- Workspace Actions
Overview
This node integrates with the Dataiku DSS API, enabling users to perform a wide range of operations on Dataiku DSS resources directly from n8n workflows. Specifically, for the Project Deployer resource and the Create Project operation, it allows creating a published project deployment in the Dataiku Project Deployer system.
Common scenarios where this node is beneficial include automating project deployments, managing Dataiku projects programmatically, and integrating Dataiku DSS project lifecycle management into broader automation workflows. For example, you can automate the creation of new project deployments as part of a CI/CD pipeline or trigger project deployments based on external events.
Properties
| Name | Meaning |
|---|---|
| Request Body | JSON object containing the request payload required by the "Create Project" operation. This typically includes configuration details for the project to be created in the deployer. |
The property Request Body is a JSON input that must conform to the expected schema of the Dataiku DSS Project Deployer API for creating a project deployment.
Output
- The node outputs the response from the Dataiku DSS API call.
- The output is provided in the
jsonfield as parsed JSON data representing the result of the create project operation. - If the API returns binary data (not typical for this operation), it would be available in the
binaryfield, but for "Create Project" this is not expected.
Dependencies
- Requires an active connection to a Dataiku DSS instance.
- Requires valid API credentials: specifically, an API key credential for authenticating requests to the Dataiku DSS server.
- The node expects the Dataiku DSS server URL and user API key to be configured in the credentials.
- No additional external dependencies beyond the standard HTTP request capabilities and form-data handling bundled with n8n.
Troubleshooting
- Missing Credentials Error: If the API credentials are not set or invalid, the node will throw an error indicating missing Dataiku DSS API credentials.
- Required Parameter Errors: The node validates required parameters such as project key, deployment ID, bundle ID, etc., depending on the operation. Missing these will cause errors specifying which parameter is required.
- API Request Failures: Network issues, incorrect URLs, or permission problems on the Dataiku DSS side may cause API request failures. The node surfaces these errors with messages prefixed by "Error calling Dataiku DSS API".
- Invalid JSON in Request Body: Ensure the JSON provided in the Request Body property is well-formed and matches the expected API schema.
- Unexpected Response Format: If the API returns non-JSON responses unexpectedly, the node attempts to parse them; failure to parse will return raw text.
Links and References
- Dataiku DSS API Documentation
- Dataiku Project Deployer API Reference
- n8n Documentation - Creating Custom Nodes
This summary focuses on the "Project Deployer" resource and the "Create Project" operation as requested, describing the relevant input property and the node's behavior when executing this operation.